Recycling and the circular economy

Picture of a person from behind. The person is wearing a safety vest and helmet. In the background there is a recycling collection point with plastic bottles.

Zoom Image

Source: Ali - stock.adobe.com

Owing to the world’s growing population and increasing prosperity, global consumption of raw materials has more than tripled since 1970, to 106.6 billion tonnes. Assuming consumption behaviour remains unchanged, an increase of around 60% over that of 2020 (95.1 billion tonnes) is expected by 2060 [1]. The current scale of primary raw material extraction and forms of raw material usage already exceed planetary boundaries, and are not sustainable: at present, 55% of global greenhouse gas emissions, 90% of biodiversity loss on land and 40% of the impacts of particulates on health are attributable to the extraction and processing of raw materials [1].

Raw material deposits are finite and their extraction is already becoming increasingly risky [2]. This can be rectified by a shift from a linear economy (take - make - waste) towards a circular economy. The circular economy combines three principles:

  • Reduction: reducing the use of resources in absolute terms (resource efficiency, waste avoidance, substitution of emissions-intensive raw materials, use of renewable resources), sufficiency-based consumption and sufficiency-based economic activity
  • Extension of product life cycles through reuse and repair (reuse, refurbishment of end-of-life devices, hardware and software updates, cleaning)
  • Recycling: reuse of materials recovered from end-of-life products [3-5]

A circular economy contributes to sustainability and social justice [5]. It encompasses the entire cycle of value creation, from raw material production to product design, the production and utilization phases through to recirculation of resources [6]. The recirculation process requires creation of "reverse production/logistics" [7]. At the forefront of a circular economy are the complete closure of energy and material cycles ("cradle-to-cradle2), resource efficiency and the reduction of consumption. In addition, substances harmful to health and the environment must be prevented from entering material cycles, and processes within the circular economy must be based on a sustainable supply of energy [8; 9]. A circular economy holds great potential for reducing greenhouse gas emissions, conserving ecosystems, preserving biodiversity and reducing the consumption of primary raw materials [1; 5].


  • What is accelerating the trend, and what is slowing it down?

    Through the NKWS, Germany's national strategy for a circular economy, the country's policymakers are creating a framework for a circular economy. The main aim is to reduce the absolute demand for primary raw materials and the volume of waste created in Germany [8]. Germany's Circular Economy Act (KrWG), which was amended in 2020, specifies a five-level hierarchy of waste management: avoidance, reuse, recycling, utilization (e.g. energy recovery) and disposal. It thereby promotes the use of secondary raw materials (for example in public procurement, or through higher recycling rates, e.g. of plastics) [10]. The NKWS is supplemented by other regulations: for example, the amendment to the Sewage Sludge Ordinance (AbfKlärV) requires phosphorus to be recovered from sewage sludge from 2029 onwards [11]. A number of cities are pursuing zero-waste concepts to promote a circular economy. Where common household products are deemed technically repairable under EU law, the European Parliament’s Right to Repair (R2R) Directive obliges manufacturers to repair them at low cost [12]. The 2023 EU Battery Regulation (BATT2), for example, specifies quotas from 2031 onwards for the use of lead, cobalt, lithium and nickel recyclates in the production of new industrial batteries and large batteries used for traction [13]. Altogether, governments are enacting stricter regulations for the closing of material cycles [14] and investing in programmes to promote the circular economy [15].

    In the building materials sector, the strong demand for housing, rising costs and the threat of supply bottlenecks require the development of new or expansion of existing recycling capacities [6]. The looming shortage of important raw materials for the construction sector, such as sand and flue gas desulphurized gypsum, is also driving the trend. Local extraction and exploitation of secondary raw materials from existing buildings, infrastructure or durable goods [8], termed "urban mining", helps to cushion supply bottlenecks [16]

    Expansion of renewable energies, e-mobility, and the increasingly extensive digital infrastructure and digital inclusion are also further increasing the need for resources in Germany, particularly for metals (e.g. aluminium, copper, cobalt, nickel, lithium) [1]. Many of the raw materials required are on the current list of critical raw materials that are essential for the European economy and whose supply to the EU is fraught with uncertainty [17]. To assure their supply, the EU seeks to develop recycling capacities for critical raw materials within Europe and make greater use of urban mining, besides forging partnerships with resource-rich countries [7; 8; 14].

    Pollution of soils, inland waters and oceans by plastics and heavy contamination of the environment - and food chains - by microplastics is creating growing awareness of the need to completely close plastics cycles. Import bans on plastic waste by some countries are also creating pressure for action [7; 18], as Germany is the third largest exporter of plastic waste, after the USA and Japan [19]. Despite the known environmental and health impacts of plastic waste, plastic production is booming. 600 million tonnes of plastic are expected to be produced worldwide in 2025, most of which will not be recycled [18]. In Germany, the recycling rate for post-consumer plastic waste was 26.8% in 2021; the use of plastic recyclates in the production of virgin material was 16.3% [7].

    Besides finding ways of reducing greenhouse gases, researchers are increasingly looking for means of capturing CO2 at the point of origin and feeding it into a material cycle. CO2 capture is necessary for attainment of the climate targets. In the carbon capture and usage (CCU) process, the captured CO2 can be used directly following processing, for example in beverage production or in fire extinguishing systems, indirectly as a starting material for the synthesis of basic chemicals [20], or bound permanently in products (e.g. bricks) [21].

    In 2023, Germany was ranked only 22nd among countries worldwide in terms of competitiveness [22]. A rapid transformation to a circular economy and the development of innovative markets, for example in the field of recycling technologies, can help Germany to become more competitive [6]. The digital transformation facilitates the implementation of circular solutions, for example through digital marketplaces for the resale, sharing or exchange of products [23; 24]. New areas of business (such as repair services, second-hand products, and second-life use, such as the repurposing of batteries from electric vehicles as energy storage devices), and circular economy business models such as "product as a service" (use instead of ownership), present opportunities for economic growth [25].

    By 2030, 330,000 new jobs are expected to be created in the German recycling and waste management sector, for example for the management of new recycling streams [23]. In view of the shortage of personnel and skilled workers, however, this may present companies with challenges. Engineers and heavy goods vehicle drivers, in particular, are in short supply [14]. Conversely, this may also present new employment opportunities for less well-qualified people and those in supported employment arrangements, for example in the refurbishment of end-of-life electrical appliances [25]. Solutions must be found swiftly for the recycling of wind turbine rotor blades and disused solar panels: by 2027, 87,000 rotor blades alone will reach the end of their service life [26]. In 2025, solar modules are expected to generate 14,000 to 22,000 tonnes of waste; the forecast for 2050 is 4.9 to 9.4 million tonnes [27].

    A swift transition to a circular economy is being held back by sluggish development of the sales markets for recyclates. In order to reduce competitive disadvantages compared to primary raw materials, the quality, cost-effectiveness and acceptance of recyclates must be improved. This requires investment in more efficient separation and sorting processes. Recycling processes are also needed for recovery of critical raw materials from products in which they are present only in minute quantities [7; 14]. Safe, repairable and recyclable products are more likely to be developed if all parties along the value chain work together to take reprocessing and reuse into account, from the product design stage onwards [7; 14; 28].

    To increase recycling capacities, new recycling plants must also be approved more quickly, collection activities expanded (e.g. for small electrical appliances) and statutory regulations amended [14]. For example, a market for recyclates could be established for certain mineral substitute building materials if they were no longer classified as waste [29]. Regulatory framework conditions for the circular economy must be set out in standards [6].

    Large parts of the German population are clearly not conscious of the need for resources to be consumed responsibly [4; 30]. This is exacerbated by greenwashing (companies making invalid claims for their ecofriendly credentials and sense of responsibility). A change in thinking in the economy is harder to bring about when resource-intensive consumption models and markets continue to be promoted without consideration of the ecological consequences (external costs), and best practices for a circular economy are not benchmarked systematically and internationally [1; 31].

  • Who is affected?

    The circular economy influences all sectors. Changes in recycling rates and capacities have an impact on waste management and logistics. Changing supply chains and the rising use of secondary raw materials and recyclates primarily affect the raw materials and building materials industry, the construction industry, agriculture and the manufacturing industries (chemical industry, rubber and plastic goods manufacture, metals processing and automotive industries, manufacture of glass and glassware, packaging industry, electrical engineering industry, textile industry, printing and paper processing). The power generation and distribution industry must adapt the supply of energy to the changing energy needs resulting from the circular economy, and deliver sustainable energy. New business models and fields are emerging, with a focus on repair and modification workshops, the sharing economy and the information and telecommunications industry.

  • Examples
  • What do these developments mean for workers' safety and health?

    The transition to a circular economy is currently still in its infancy in many areas; some solutions are already being implemented or tested under realistic conditions in laboratories. The challenges for occupational safety and health presented by the circular economy are manifold and in some cases still unknown, as the corresponding infrastructures are still taking shape. However, an attempt is made below to shed light on selected developments.

    During transition to a circular economy with automated processes, in particular, workers may be exposed to hazardous substances during demolition, recycling, reuse of raw materials and repair work [28; 32].

    In particular, contact with asbestos is possible during demolition of any buildings built, renovated or modernized before the substance was banned on 31 October 1993. Asbestos can be found in numerous building materials such as plasters, fillers and tile adhesives, and also in construction chemicals such as putty [33]. A risk also exists of exposure to polychlorinated biphenyls (PCBs), which were used until the 1970s as plasticizers in permanently elastic joint sealants, as flame retardants in coatings and paints, and as additives for lubricants and fillers. Polycyclic aromatic hydrocarbons (PAHs), legacy mineral wool and wood preservatives may also pose hazards [34]. Decommissioning of wind turbines and recycling of rotor blade waste may lead in particular to exposure to fragments and fibres of glass and carbon, which may be carcinogenic [35].

    New materials such as fibre composites (e.g. glass or carbon fibre-reinforced plastics) or carbon nanotubes (CNTs) are being used in lightweight construction (e.g. wind energy, car and aircraft manufacturing, shipbuilding) as part of the shift to a low-carbon economy, and offer tremendous potential to improve energy efficiency. Since some CNTs have been shown at high doses in animal experiments to cause inflammatory changes in the lungs [36] or to be carcinogenic, they require particular consideration during recycling [23].

    Electronic waste is still often dismantled manually during recycling. This may result in exposure to azobenzenes, beryllium, lead compounds, cadmium and its compounds, cobalt, nickel, PCBs, mercury, and yttrium and its compounds. Hazardous substances may also be bound to dust that is released during disassembly. Many of these hazardous substances have carcinogenic, sensitizing, reprotoxic, neurotoxic and/or irritant effects [37].

    Digital product and building passports can provide information on all raw materials and substances used [7; 14; 32] and help companies to protect employees specifically against exposure to hazardous substances [28]. Such information can also be provided through representation by the use of digital models (e.g. digital twins). Building information modelling (BIM) is used in the construction industry, for example, and feeds all relevant information into 3D models of buildings [14; 25]. Marker and sensor-based techniques can also be useful for recognition of components [23].

    In repair businesses, the falling purchase costs of equipment are making additive manufacturing processes (3D printing) affordable on a wide scale, enabling even small and micro businesses to use 3D printing to produce spare parts as required. This obviates the need for extensive stocks of mechanical spare parts [23]. Some starting materials for 3D printing may have carcinogenic, mutagenic and/or reprotoxic effects. A risk of fire and explosion may exist during the processing of plastic and metal powders [38; 39]. Depending on the additive process and the material used, different hazards arise, in turn requiring different protective measures [40-42].

    Lithium-ion batteries may also pose fire and explosion hazards. Safe storage and transport of lithium-ion batteries intended for reuse or recycling helps to prevent fires [14]. Lithium-ion batteries used in electric cars are still dismantled manually in most cases. Where batteries are discharged manually, operator error may cause battery modules to heat up and explode [43]. Where battery fires do occur, the focus lies on preventing exposure to hazardous substances and electrical hazards whilst the fire is being extinguished. Smart technologies for determining the battery condition can estimate the remaining service life, make preventive maintenance possible, and contribute to safety of the system and workers [14; 23]. This particularly applies to determining the condition of components that have already been returned to the cycle several times. If such components are not taken out of use in good time, they may pose a risk due to wear or soiling [32].

    Many manual activities in the circular economy will be automated in the future [44-46]. Laser technology, robotics, vision systems, sensors and detectors, artificial intelligence and information technology contribute to automation and reduce the risks, particularly of exposure to hazardous substances and physical stress [32]. At the same time, surveillance tasks are increasing. This can lead to workers’ freedom to take their own decisions being restricted, and the work being perceived as more monotonous [32]. In addition, the progressive networking of internet-based technical systems and the growing use of collaborative or autonomous robots increase the risk of cyber attack and impose greater requirements on industrial security.

    The transition to a circular economy calls for use of new and adapted technologies, processes and materials. The work activities and skills needs of employees are also changing as a result. Interdisciplinary research and networking of companies along the value chain are essential for successful development and scaling of circular solutions [6; 14]. For employees in the companies concerned, this may lead to additional workload and work intensification; for managers, in particular, it may result in conflicts of objectives and interests. This increases the risk of excessive demands and mental stress. A further challenge is the frequent scarcity of skilled personnel needed to implement the transformation. In some cases, the lost knowledge and skills of previous generations (e.g. repairs, sewing, preserving food) must be re-acquired; in others, familiarization with complex new technologies is required [28; 32]. Changes in vocational activity may constitute stress factors, possibly accompanied by excessive demands, worries for the future and existential fear.

  • What observations have been made for occupational safety and health, and what is the outlook?
    • The transformation to a circular economy is still accompanied by many unknowns for occupational safety and health. The OSH community must support the transformation processes (e.g. new material cycles in the recycling industry, refinement of secondary raw materials, new technologies for separating composite materials) from the outset and monitor and support the use of new materials with research, consulting and risk assessment. This also includes active participation in standardization activity.
    • The transformation to a circular economy differs in its impact on occupational safety and health from one sector to the next. Sector-specific analyses support the judicious provision of prevention services.
    • Exposure to hazardous substances is an issue in many sectors, activities and processes in the circular economy. Protective measures are often known, but awareness of the risks of exposure to hazardous substances is inadequate. Advice on risks and protective measures, supported by the German statutory accident insurance system, is particularly important in small and micro enterprises and in companies where new processes are being implemented.
    • Automation technologies (e.g. in waste management) and digital models for visualization have the potential to reduce exposure to hazardous substances significantly. Artificial intelligence also optimizes processes by determining their condition, and increases the reliability of systems [14]. The findings and outlook described in the relevant trend descriptions can also be applied here.
    • The transition to a circular economy and the use of new technologies may initially be a further source of stress. Greater consideration for mental health, acquisition of skills through initial and further training, and measures for the recruitment of personnel and skilled workers are becoming increasingly relevant.
    • The circular economy enables prosperity to be created without violation of planetary boundaries, thereby contributing to the long-term preservation of healthy working and living conditions. The German statutory accident insurance system can promote the transformation to a circular economy by building up expertise of its own in the circular economy and by supporting efforts in the interests of sustainability at the political level.
    • Publication and promotion of best practices in connection with solutions in the circular economy can support insured companies and establishments in implementations of their own.
  • Sources (in German only)

    [1] United Nations Environment Programme: Global Resources Outlook 2024: Bend the Trend - Pathways to a liveable planet as resource use spikes Hrsg.: International Resource Panel, Nairobi 2024 https://wedocs.unep.org/20.500.11822/44901 (abgerufen am 06.03.2024)

    [2] Bachmann, S.; Bittner, C.; Friess, S.; Fuhr, L.; Heni, Y.; Koch, J.; Kraus, A.; Schurath, B.; Wimberger, C.: 12 Argumente für eine Rohstoffwende. Hrsg.: AK Rohstoffe c/o PowerShift e.V, Berlin 2021 https://ak-rohstoffe.de/wp-content/uploads/2021/02/Argumentarium_210211_final.pdf (non-accessible)

    [3] Zirkuläres Wirtschaften: Hebelwirkung für eine nachhaltige Transformation. Hrsg.: Rat für Nachhaltige Entwicklung, Berlin 2021 https://www.nachhaltigkeitsrat.de/wp-content/uploads/2021/10/20211005_RNE_Stellungnahme_zirkulaeres_Wirtschaften.pdf (non-accessible) (abgerufen am 13.03.2024)

    [4] Lutter, S.; Kreimel, J.; Giljum, S.; Dittrich, M.; Limberger, S.; Ewers, B.; Schoer, K.; Manstein, C.: Die Nutzung natürlicher Ressourcen - Ressourcenbericht für Deutschland 2022. Hrsg.: Umweltbundesamt, Dessau-Roßlau 2022 https://www.umweltbundesamt.de/ressourcenbericht2022 (abgerufen am 06.03.2024)

    [5] Circle Economy: The Circularity Gap Report 2023. Hrsg.: Circle Economy, Amsterdam 2023 https://www.circularity-gap.world/2023 (abgerufen am 20.03.2024)

    [6] Taskforce Kreislaufwirtschaft: Impulspapier - Kreislaufwirtschaft für Wertschöpfung, Souveränität und Nachhaltigkeit. Hrsg.: Allianz für Transformation, Berlin 2024 https://www.bundesregierung.de/resource/blob/2196306/2255540/7e64b004ff599e3c025bd3f204013dad/2024-01-23-impulspapieraft-data.pdf?download=1 (non-accessible) (abgerufen am 21.03.2024)

    [7] Lange, U.: VDI ZRE Publikationen: Kurzanalyse Nr. 33: Ressourceneffizienz durch innovative Recyclingtechnologien und -verfahren. Hrsg.: VDI Zentrum Ressourceneffizienz (VDI ZRE), Berlin 2023 https://www.ressource-deutschland.de/fileadmin/user_upload/1_Themen/h_Publikationen/Kurzanalysen/2023-06_VDI_ZRE_KA_33__Ressourceneffizienz_durch_Recyclingtechnologien.pdf (non-accessible) (abgerufen am 05.04.2024)

    [8] Die Nationale Kreislaufwirtschaftsstrategie (NKWS) - Grundlagen für einen Prozess zur Transformation hin zu einer zirkulären Wirtschaft. Hrsg.: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz, Berlin 2023 https://www.bmuv.de/fileadmin/Daten_BMU/Download_PDF/Abfallwirtschaft/nkws_grundlagen_bf.pdf (non-accessible) (abgerufen am 06.03.2024)

    [9] Eine starke Kreislaufwirtschaft für Wertschöpfung, Souveränität und Nachhaltigkeit. Gemeinsames Kommuniqué der Allianz für Transformation. Hrsg.: Allianz für Transformation, Berlin 2024 https://www.bundesregierung.de/resource/blob/976072/2255538/951444052a6438d3b13564176ea7bcc9/2024-01-23-kommuniqueaft-data.pdf?download=1 (non-accessible) (abgerufen am 23.04.2024)

    [10] Neue Instrumente im Einsatz gegen Vermüllung und Ressourcenverschwendung. Hrsg.: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV), Berlin 2020 https://www.bmuv.de/pressemitteilung/neue-instrumente-im-einsatz-gegen-vermuellung-und-ressourcenverschwendung, 09.10.2020 (abgerufen am 26.03.2024)

    [11] Verordnung zur Neuordnung der Klärschlammverwertung. Klärschlammverordnung. Hrsg.: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz, Berlin 2017 https://www.bmuv.de/gesetz/verordnung-zur-neuordnung-der-klaerschlammverwertung, 14.10.2017 (abgerufen am 03.04.2024)

    [12] Recht auf Reparatur: Reparieren einfacher und attraktiver machen. Hrsg.: Straßburg 23.04.2024 https://www.europarl.europa.eu/news/de/press-room/20240419IPR20590/recht-auf-reparatur-reparieren-einfacher-und-attraktiver-machen

    [13] EU-Umweltrat beschließt neue Regeln für nachhaltigere Batterien. Hrsg.: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz, Berlin 2022 https://www.bmuv.de/pressemitteilung/eu-umweltrat-beschliesst-neue-regeln-fuer-nachhaltigere-batterien, 17.03.2022 (abgerufen am 26.04.2024)

    [14] Bechhaus, P.; Birnstengel, B.; Bierhaus, L.; Eckhardt, M.; Dietzsch, N.; Hoffmeiste, J.; Hutzenthaler, P.; Klose, G.; Lambert, J.; Schütz, N.; Shershunovich, Y.; Thevessen, A.; Weiss, J.; Adlof, M.; Becker, G.; Gellenbeck, K.; Heller, N.; Reuter, R.; Faulstich, M.: Statusbericht der deutschen Kreislaufwirtschaft 2024. Hrsg.: Eine gemeinsame Publikation von folgenden Verbänden der Deutschen Kreislaufwirtschaft: ASA, BDE, BDSAV, BDSV, BVSE, DGAW, INWESD, ITAD, KDK, PLASTICSEUROPE, VDM, VDMA, VHI, VKU, IFAT, Berlin 2024 https://statusbericht-kreislaufwirtschaft.de/wp-content/uploads/2024/01/Statusbericht_2024_25012024_opt.pdf (non-accessible) (abgerufen am 06.03.2024)

    [15] Förderprogramme Kreislaufwirtschaft. Hrsg.: VDI Technologiezentrum GmbH, Düsseldorf 2024 https://www.ressource-deutschland.de/themen/kreislaufwirtschaft/innovative-recyclingtechnologien/foerderprogramme-kreislaufwirtschaft/ (abgerufen am 12.06.2024)

    [16] Röhrlich, D.: Sand - Ein nur scheinbar unendlicher Rohstoff. Hrsg.: Deutschlandfunk, Köln 2020 https://www.deutschlandfunk.de/sand-ein-nur-scheinbar-unendlicher-rohstoff-100.html, 05.01.2020 (abgerufen am 17.03.2024)

    [17] Kommission, E.: Studie zur EU-Liste kritischer Rohstoffe (2020). Abschlussbericht. Hrsg.: Amt für Veröffentlichungen der Europäischen Union, Luxemburg 2020 https://op.europa.eu/de/publication-detail/-/publication/ff34ea21-ee55-11ea-991b-01aa75ed71a1 (abgerufen am 22.03.2024)

    [18] Plastikatlas 2019. Daten und Fakten über eine Welt voller Kunststoff, 2., Juli 2019 ed. Hrsg.: Heinrich-Böll-Stiftung; Bund für Umwelt und Naturschutz Deutschland e.V., Berlin 2019 https://www.bund.net/service/publikationen/detail/publication/plastikatlas-2019/ (abgerufen am 11.04.2024)

    [19] Nier, H.: Die größten Plastikmüll-Exporteure der Welt. Hrsg.: Statista GmbH, Hamburg 2019 https://de.statista.com/infografik/18340/die-groessten-plastikmuell-exporteure-der-welt/, 12.06.2019 (abgerufen am 11.04.2024)

    [20] Carbon Capture and Utilization (CCU). Hrsg.: Umweltbundesamt, Dessau-Roßlau 2021 https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/carbon-capture-utilization-ccu, 27.09.2021 (abgerufen am 12.06.2024)

    [21] Strobel, B.: Kohlendioxid: Vom Problem - zum Rohstoff. Fraunhofer-Magazin (2024) Nr. 1, S. 11-21

    [22] Brandt, M.: World competitiveness ranking 2023: So hat sich Deutschlands Wettbewerbsfähigkeit entwickelt. Hrsg.: Statista GmbH, Hamburg 2023 https://de.statista.com/infografik/30229/abschneiden-von-deutschland-im-world-competitiveness-ranking/, 20.06.2023 (abgerufen am 12.06.2024)

    [23] Ressourceneffiziente Kreislaufwirtschaft. Forschungskonzept für eine kreislaufoptimierte Wirtschaftsweise. Hrsg.: Bundesministerium für Bildung und Forschung (BMBF), Berlin 2018 https://www.bmbf.de/SharedDocs/Publikationen/de/bmbf/7/31419_Ressourceneffiziente_Kreislaufwirtschaft.pdf?__blob=publicationFile&v=3 (non-accessible) (abgerufen am 24.04.2024)

    [24] Lange, U.: Dokumentation des Fachgesprächs: Circular Economy und ressourceneffiziente Kreislaufwirtschaft - Der Weg ins zirkuläre Wirtschaften. Hrsg.: VDI Zentrum Ressourceneffizienz GmbH (VDI ZRE), Berlin 2022 https://www.ressource-deutschland.de/fileadmin/user_upload/1_Themen/h_Publikationen/Fachgespraeche/VDI_ZRE_Fachgespraech_Circular_Economy_und_ressourceneffiziente_Kreislaufwirtschaft.pdf (non-accessible)(abgerufen am 24.04.2024)

    [25] Buddemeier, P.; Rheinbay, L.: Chancen der Kreislaufwirtschaft für Deutschland. Analyse von Potenzialen und Ansatzpunkten für die IKT-, Automobil- und Baustoffindustrie. Hrsg.: Rat für nachhaltige Entwicklung, Berlin 2017 https://www.nachhaltigkeitsrat.de/mediathek/?tab=documents&doc_search=kreislauf (abgerufen am 20.03.2024)

    [26] Schwarze-Reiter, K.: Das XXL-Müllproblem. Fraunhofer-Magazin 4 (2023), S. 50-52

    [27] Beckmann, J.: Wieso Abfall? Entsorgung von Photovoltaik-Anlagen. Installateur 2 (2012) Nr. 12, S. 28-31 https://www.abfallratgeber.bayern.de/publikationen/elektro_und_elektronikgeraete/doc/entsorgung_photovoltaik.pdf (non-accessible) (abgerufen am 22.04.2024)

    [28] Daheim, C.; Prendergast, J.; Rampacher, J.; Désaunay, C.: Foresight Study on the Circular Economy and its effects on Occupational Safety and Health. Phase 1: Macro-scenarios. Hrsg.: European Agency for Safety and Health at Work, Luxembourg: Publications Office of the European Union 2021 https://osha.europa.eu/en/publications/foresight-study-circular-economy-and-its-effects-occupational-safety-and-health (abgerufen am 25.04.2024)

    [29] Eckpunktepapier zur Abfallende-Verordnung für bestimmte mineralische Ersatzbaustoffe. Hrsg.: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz, Berlin 2023 https://www.bmuv.de/fileadmin/Daten_BMU/Download_PDF/Glaeserne_Gesetze/20._Lp/meb_eckpunktepapier/Entwurf/meb_eckpunktepapier_bf.pdf (non-accessible)(abgerufen am 04.04.2024)

    [30] Bendisch, B.; Kleinsteuber, A.: Bürgerdialog GesprächStoff Ressourcen 2019-2020. Deutsches Ressourceneffizienzprogramm ProgRess III. Hrsg.: Umweltbundesamt, Dessau-Roßlau 2020 https://www.bmuv.de/buergerservice/beteiligung/buergerdialog-gespraechstoff-ressourcen-progress-iii (abgerufen am 03.04.2024)

    [31] Bachmann, G.: Nachhaltige Kreislaufwirtschaft = Ressourcenmanagement und Siedlungsabfallwirtschaft. In: Haase, Hartwig (Hrsg.): Tagungsband: 21. Tagung Siedlungsabfallwirtschaft Magdeburg TASIMA21, S. 33-38. Otto-von-Guericke-Universität Magdeburg, Magdeburg 2016 https://www.nachhaltigkeitsrat.de/wp-content/uploads/migration/documents/Bachmann_TASIMA21_23-09-2016.pdf (non-accessible) (abgerufen am 10.05.2024)

    [32] Héry, M.; Malenfer, M.: Prospective. Economie circulaire et risques professionnels. Exercise de prospective pour cerner les enjeux de prévention. Hygiène et sécurité du travail 257 (2019), S. 104-111 https://www.inrs.fr/media.html?refINRS=VP%2025

    [33] Asbest beim Bauen im Bestand. Hrsg.: BG BAU - Berufsgenossenschaft der Bauwirtschaft Berlin 2024 https://www.bgbau.de/themen/sicherheit-und-gesundheit/asbest (abgerufen am 29.04.2024)

    [34] Dünger, O.: Schadstoffe im Baubestand vor und während einer Sanierung erkennen. Hrsg.: RM Rudolf Müller Medien GmbH & Co. KG, Köln 2014 https://www.schadstoff-kompass.de/sanierung/schadstoffe-bei-der-sanierung-erkennen/ (abgerufen am 29.04.2024)

    [35] Kühne, C.; Holz, P.; Volk, R.; Stallkamp, C.; Steffl, S.; Schultmann, F.; Mülhopt, S.; Baumann, W.; Wexler, M.; Yogish, S.; Kühn, S.; Gehrmann, H.-J.; Stapf, D.; Schweppe, R.; Pico, D.; Seiler, E.; Forberger, J.; Brantsch, P.; Brenken, B.; Beckmann, M.: 3. Zwischenbericht. Entwicklung von Rückbau- und Recyclingstandards für Rotorblätter. Hrsg.: Umweltbundesamt, Dessau-Roßlau 2021 https://www.umweltbundesamt.de/publikationen/entwicklung-von-rueckbau-recyclingstandards-fuer (abgerufen am 22.06.2022)

    [36] FAQ's. Tätigkeiten mit Nanomaterialien. Arbeitshilfe für Betriebsärztinnen und Betriebsärzte. Hrsg.: Deutsche Gesetzliche Unfallversicherung e. V. (DGUV), Berlin 2010 https://www.dguv.de/medien/inhalt/praevention/praev_gremien/arbeitsmedizin/produkte/faq_nano/faqs_nano_021110.pdf (PDF, 255 kB, non-accessible) (abgerufen am 02.05.2024)

    [37] Arbeitsgruppe "Elektronikschrottrecycling": Handlungsanleitung zur guten Arbeitspraxis. Elektronikschrottrecycling - Tätigkeiten mit Gefahrstoffen bei der manuellen Zerlegung von Bildschirm- und anderen Elektrogeräten. Hrsg.: Regierungspräsidium Kassel Kassel 2011 https://www.bgetem.de/redaktion/arbeitssicherheit-gesundheitsschutz/dokumente-und-dateien/themen-von-a-z/gefahrstoffe/fachveroeffentlichungen/elektronikschrottrecycling-taetigkeiten-mit-gefahrstoffen-bei-der-manuellen-zerlegung-von-bildschirm-und-anderen-elektrogeraeten (abgerufen am 29.04.2024)

    [38] Rondinone, I.: : Arbeitsschutz beim 3-D-Druck. Hrsg.: Deutsche Gesetzliche Unfallversicherung e. V. (DGUV), Berlin 2022 https://aug.dguv.de/arbeitssicherheit/sibe-tipps/arbeitsschutz-3-d-druck/, 08.09.2022 (abgerufen am 02.05.2024)

    [39] Beisser, R.; Buxtrup, M.; Fendler, D.; Hohenberger, L.; Kazda, V.; von Mering, Y.; Niemann, H.; Pitzke, K.; Weiß, R.: Inhalative Exposition gegenüber Metallen bei additiven Verfahren (3D-Druck). Gefahrstoffe - Reinhaltung der Luft 77 (2017) Nr. 11/12, S. 487-496 https://www.dguv.de/medien/ifa/de/pub/grl/pdf/grl_2020_002.pdf (PDF, 2.9 MB, non-accessible) (abgerufen am 02.05.2024)

    [40] Verein deutscher Ingenieure e. V.: Additive Fertigungsverfahren Anwendersicherheit beim Betrieb der Fertigungsanlagen Laserstrahlschmelzen von Metallpulvern. VDI 3405 Blatt 6.1. Hrsg.: Verein deutscher Ingenieure e. V., Düsseldorf 2019 https://www.vdi.de/fileadmin/pages/vdi_de/redakteure/richtlinien/inhaltsverzeichnisse/3083912.pdf (non-accessible) (abgerufen am 25.06.2024)

    [41] Verein deutscher Ingenieure e. V.: Additive Fertigungsverfahren Anwendersicherheit beim Betrieb der Fertigungsanlagen Lasersintern von Kunststoffen. VDI 3405 Blatt 6.2. Hrsg.: Verein deutscher Ingenieure e. V., Düsseldorf 2021 https://www.vdi.de/fileadmin/pages/vdi_de/redakteure/richtlinien/inhaltsverzeichnisse/3205404.pdf (non-accessible) (abgerufen am 25.06.2024)

    [42] Verein deutscher Ingenieure e. V.: Additive Fertigungsverfahren Anwendersicherheit beim Betrieb der Fertigungsanlagen Harzbasierte Fertigungsverfahren. VDI 3405 Blatt 6.3. Hrsg.: Verein deutscher Ingenieure e. V., Düsseldorf 2023 https://www.vdi.de/fileadmin/pages/vdi_de/redakteure/richtlinien/inhaltsverzeichnisse/3440560.pdf (non-accessible) (abgerufen am 25.06.2024)

    [43] Umweltfreundliches Recycling von Lithium-Ionen-Batterien. Hrsg.: Duesenfeld GmbH, Wendeburg 2024 https://www.duesenfeld.com/recycling.html (abgerufen am 30.04.2024)

    [44] Demontage. Hrsg.: Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 2024 https://www.pem.rwth-aachen.de/go/id/bgcuds, 25.3.2024

    [45] Draese, N.: Bosch automatisiert die Batterieentladung für mehr Tempo beim Recycling. Hrsg.: VDI Verlag GmbH, Düsseldorf 06.04.2023 https://www.ingenieur.de/technik/fachbereiche/verkehr/bosch-automatisiert-die-batterieentladung-fuer-mehr-tempo-beim-recycling/

    [46] Wertstoffe automatisiert aus Elektronikschrott gewinnen. Hrsg.: agas Agentur und Verlag, Ismaning 2020 https://circular-technology.com/wertstoffe-automatisiert-aus-elektronikschrott-gewinnen/, 04.05.2020

Contact

Dipl.-Psych. Angelika Hauke

Work Systems of the Future

Tel: +49 30 13001-3633


Dipl.-Übers. Ina Neitzner

Work Systems of the Future

Tel: +49 30 13001-3630
Fax: +49 30 13001-38001