The goal of the German Sustainable Development Strategy (GSDS) is to create a "forward-looking system of mobility" that is "economically, socially and ecologically balanced" [1], thereby taking all three dimensions of sustainable development into account. This system of mobility is to be attained through the transformation of transportation [1].
The transformation of transportation is intended to ensure prosperity and competitiveness, to take an integrated approach to all modes of transport, to be compatible with an economic infrastructure and to be geared to demand. It also has the goal of making the transformation of transportation socially acceptable and of retaining jobs: the demand for skilled labour generated by the transformation of transportation is to be identified at an early stage to enable employment in new areas to be created. At the same time, the transformation of transportation has the goal of substantially reducing greenhouse gas emissions [2], since in 2023, the transport sector accounted for 146 million tons of CO2 equivalents or “CO2 eq” - 22% of all greenhouse gas emissions in Germany. This equates to a mere 10.9% reduction in greenhouse gas emissions from 1990 levels - a smaller reduction than in any other sector - and 13 million tonnes of CO2 short of the transport sector’s climate target for 2023 [3].
Fields of activity in the transformation of transportation are:
Shifting transportation to emission-free and low-emission mobility options (walking and cycling) and improvements in the efficiency of private motor transport - for example through lightweight construction, smaller and lighter cars, low rolling resistance tyres, a blanket speed limit on motorways, and car sharing - are means of reducing greenhouse gas emissions. A further contribution, however, is made by the avoidance of transportation itself, for example by greater flexibility in the location of work, or the use of video conferencing [1; 5-7].
The trends of "alternative fuels" and "networked mobility" are addressed in trend descriptions of their own.
The strongest driver of sustainable mobility at present is climate change. The German Federal Climate Protection Act (KSG) requires the transport sector to reduce its greenhouse gas emissions by 48% from 1990 levels by 2030 [8]. Policymakers have already taken measures to reduce greenhouse gas emissions in the transport sector: in the European Union, for example, cars registered for the first time from 2035 onwards must emit no CO2 [9]. Germany is also set to become a lead market for electromobility. The intention is that by 2030, at least 15 million fully electric cars will be registered in Germany, and at least one million public charging points are to be available [2; 10]. The German Clean Vehicles Procurement Act (SaubFahrzeugBeschG) sets minimum targets for public procurement of low-emission and zero-emission passenger cars and light and heavy commercial vehicles [11].
The 2023 Climate Action Programme makes provision for the faster adoption of trucks and heavy commercial vehicles with new powertrain systems. Measures for this purpose include introduction of CO2 fleet targets for heavy commercial vehicles, extension of the heavy goods vehicles (HGV) toll to heavy commercial vehicles and levying of an emissions-based CO2 surcharge on the HGV toll. Furthermore, incentive programmes are to be created for climate-friendly delivery transport, and basic infrastructure networks are to be established for charging battery electric trucks on the motorway network and refuelling hydrogen-powered trucks on German sections of the trans-European transport network. Support is also to be provided for expansion of the charging/refuelling infrastructure for commercial vehicles at logistics hubs and depots [12].
A further factor driving sustainable mobility is the desire for greater resilience in the face of global events such as the war in Ukraine and current changes in the world order and international relations. This is coupled with the intention of reducing raw materials dependencies, and improving the security of supply [2]. Expansion of renewable energies and promotion of a comprehensive circular economy in Europe are contributing to making electromobility more sustainable [2; 13]. At the same time, management of materials and components for electromobility in a circular economy generates competitive advantages, as the associated material costs account for a significant proportion of the production costs of battery cells [2].
Under the 2023 Climate Action Programme, rail passenger transport is to double and railways' share of the freight market to increase to 25% by 2030 [12]. This is to be achieved in the first instance by facilitation of intermodal transport in freight logistics. In this concept, intermodal loading units enable freight to be transported primarily by rail or waterway, with road transport being used only for delivery to and departure from the intermodal transport terminal [14]. A second element is the Deutschlandticket (a monthly ticket for rail travel throughout Germany) and the Deutschlandtakt (a concept for an integrated timetable, coordinated nationally). These concepts are intended to promote equal access to mobility in Germany [15] and support the goal of doubling the number of users of local public transport compared to 2019 levels [16]. The 2023 Climate Action Programme has also assured investment in modernization of the rail network to make journeys faster and more reliable [12]. Approximately 3,500 kilometres of rail network on the most heavily used routes must be fully renovated by 2030 (see the "modernization, renovation, maintenance and equipment backlog" trend description), and the rail network must be expanded further. Until this work is completed, the quality of service and adherence to timetables will suffer, making rail travel less attractive [17]. Exacerbating the situation further, personnel losses for demographic reasons between now and 2030 will result in a further 60,500 to 65,500 drivers being needed merely to maintain the existing bus, tram, local light rail and underground rail services. The target of doubling passenger numbers by 2030 results in between 144,000 and 180,000 jobs needing to be filled [18]. Deutsche Bahn, Germany’s national rail provider, has a shortage of signallers, skilled staff for rail transport operations and train drivers.
Expansion and upgrading of the rail network and local public transport, development of a networked transport system that permits flexible, efficient and timely switching between different modes of transport, and CO2 pricing are to help reduce the dominance of private motor transport, which currently accounts for around 80% of powered passenger transport [12; 19; 20].
The German Federal Government promotes active mobility as an alternative to private motor transport, for example through its National Cycling Plan 3.0. Creation of a safe, seamless cycle network, expansion of cycle superhighways, secure and easily accessible cycle parking facilities at local public transport interchanges, and the reallocation of space with priority over motor vehicle traffic are among the measures intended to promote active mobility [21]. This reallocation can also benefit pedestrian traffic, which is also part of active mobility, but for which Germany does not as yet have a dedicated "pedestrian traffic strategy".
At present, many cycle paths and footpaths still leave room for improvement, which is an obstacle to a sustained switch to active mobility. Examples are the absence of segregation from motor vehicle traffic, poor surface quality, a lack of accessibility for persons with disabilities, the absence of snow clearing and gritting services in winter, and poor lighting [21; 22].
In the area of shipping, the 2023 Climate Action Programme includes the "National Action Plan for Climate-Friendly Shipping". Fields of activity include green shipping corridors, alternative propulsion systems and fuels, and promoting expansion of shoreside electric power systems for vessels in ports [12]. In conjunction with the mandatory use of shoreside power, its provision prevents the vessels’ own engines being used to generate electric power when in port.
The aim of the Federal Aviation Research Programme (LuFo) is to develop climate-neutral propulsion for aviation by 2026 [12]. Promising approaches include synthetic kerosene produced from green hydrogen and CO2, hybrid electric powertrains comprising a gas turbine and electric drive, and the use of green hydrogen in fuel cells for purely electric motors in smaller, short-range aircraft. Research is currently being conducted in living labs involving cooperation between research institutions and aviation equipment companies, aircraft and aircraft engine manufacturers and airports [23; 24].
Overall, implementation of sustainable mobility calls for systemic changes. In this context, environmental organizations criticize the fact that the current requirements review of the Federal Transport Infrastructure Plan is based on forecasts that merely uphold the current transport system, rather than developing a more sustainable vision that attaches greater importance to cycling and walking and takes into account the requirements of the German Federal Climate Protection Act [25]. Germany's federal states having a local stake in traditional transport concepts may also present an obstacle to an environmentally oriented transport policy, as automotive companies and major airports provide many jobs in some states [5].
A change in personal mobility behaviour is also required [26]. In this context, factors inhibiting a shift away from private motor transport are not limited to deficits such as those described above in the area of infrastructure and pricing, which can be controlled by policy; social values, such as the status symbol of the car, and personal attitudes and habits, such as the desire for comfort or autonomy, are also inhibiting factors [5]. Social changes such as enabling hybrid work, i.e. alternation of the work location between the workers' home and their company's site, contribute to frugal consumption behaviour, as commuting journeys are reduced.
Greenwashing (companies touting environmentally responsible behaviour and consciousness without sufficient justification) is a further factor inhibiting sustainable mobility, particularly in the area of travel with a high CO2 footprint by air or cruise ship. Conversely, raising people’s awareness of the impact of their own mobility behaviour on the environment appears promising as a means of developing sustainable mobility behaviour [5].
Sustainable mobility entails a transformation that affects everyone. Bicycles (including electric bicycles), for example, are the means of transport with the greatest growth potential. From the perspective of the German Social Accident Insurance, bicycles' relevance primarily concerns commuting: 22% of employees and 28% of people in education and training commute to their place of work, education or training by bicycle. The bicycle industry and bicycle trade offer new work opportunities to people of all skill levels [21; 27].
With regard to specific sectors, the switch to electromobility affects not only the bicycle industry and trade, but also - and above all - the manufacturers of cars, buses and light commercial vehicles and their component suppliers, and the public sector. Railway electrification affects Deutsche Bahn and rail transport. Creating and maintaining the infrastructure for overhead lines and electromobility presents a challenge, in particular for the electrical engineering industry, the power generation and distribution sector and the electrical trade. The task of creating an infrastructure for the recycling of electromobility components and raw materials falls to the waste management sector [2]. Civil engineering companies are involved in expansion of the cycle network. Courier, express delivery and parcel services are increasingly considering the use of e-bikes or cargo bikes for deliveries in inner-city areas [28]. Municipal and district authorities are also facing demands for sustainable and active mobility in urban development and the structuring of local public transport. Cycling and hiking tourism is popular in Germany [29; 30]. Airports, shipping and the chemical and refinery industry are impacted more by alternative fuels, and the information and communication technologies sector facilitates networked mobility.
Cycling to work safely:
https://publikationen.dguv.de/regelwerk/dguv-informationen/3102/sicher-mit-dem-rad-zur-schule
Proper treatment of lithium-metal and lithium-ion batteries:
https://www.bg-verkehr.de/arbeitssicherheit-gesundheit/themen/gefahrgut/unfallgefahren/lithiumbatterien
Automated XR accident simulation for the protection of vulnerable road users - COLLISION ZERO:
https://bmdv.bund.de/SharedDocs/DE/Artikel/DG/mfund-projekte/collision-zero.html
Climate protection targets set by policymakers require a rapid transformation in propulsion technologies, which in turn requires the affected industries to adapt their production structures swiftly to electromobility. The change in propulsion technologies is accompanied by new job profiles and needs for skills in development, production, maintenance, repair, and expansion of the required infrastructure. For the transformation to be achieved without the existing skilled workers being lost, companies need strategic human resource planning that initiates and supports timely retraining and further training of the existing skilled workforce [2]. This can reduce mental stress factors such as overload and insecurity, and angst brought about by deskilling. Nevertheless, considerable urgency and implementation pressure still remains, especially for employees in companies providing the necessary infrastructure. Other risks associated with infrastructure expansion and with repair and maintenance are essentially already known, and include, for example, electrical risks during installation of overhead lines, or work involving high-voltage components at charging stations or on electric vehicles. Uncertainties regarding the pace of expansion of renewable energies and the availability of green hydrogen are presenting automotive manufacturers and their suppliers with planning difficulties, as it is still unclear when e-fuels and fuel cell technology will be ready for market [31]. Explosion and fire are the primary hazards associated with the expansion of the refuelling infrastructure for hydrogen-powered goods vehicles and the use of hydrogen in general.
Electric vehicles contain high-voltage systems operating at voltages of 200 to 800 volts. These systems may present electrical hazards in the form of electric shock or electric arcs to workers in vehicle production, maintenance, repair, recycling and disposal. Firefighters may also be affected in the event of accidents if electric vehicles need to be cut open [32; 33]. During charging and use of electric vehicles (including hybrids), magnetic fields are generated in the intermediate frequency range of between around 300 Hz and 1 MHz. The effects of these fields upon human health have not yet been comprehensively studied; the legislator has, however, already set limits for this frequency range. Exposure measurements performed on behalf of the German Federal Office for Radiation Protection (BfS) failed to reveal violation of the limits, but did indicate an irregular distribution of the intermediate frequency magnetic fields, with the strongest fields often being measured in the footwell in front of the front seats or beneath and behind the rear seat [34]. Further research is to examine the influence of intermediate frequency magnetic fields arising during inductive charging on the behaviour of laboratory mice and on the incidence of tumours [35]. Electric vehicles' significantly lower noise levels compared to vehicles with internal combustion engines may pose a risk to cyclists and pedestrians [33].
As part of the transition to sustainable mobility, new materials such as fibre composites (e.g. glass or carbon fibre-reinforced plastics) or carbon nanotubes (CNTs) are used in lightweight construction (e.g. in car and aircraft manufacture and in shipbuilding) owing to their contribution to greater energy efficiency. CNTs can also significantly increase the performance of electric batteries [36]. Since some CNTs have been shown at high doses in animal experiments to cause inflammatory changes in the lungs [37] or to be carcinogenic, they require particular consideration during recycling [38].
In local public transport, the mobility transformation is creating jobs which, in some cases, cannot be filled in time, if at all, owing to the current shortage of labour and skilled workers. The planned expansion is likely to increase the shortage of personnel in local public transport and on the railways, and in turn increase the workload for the remaining personnel in the form of overtime, leading to fewer opportunities for regeneration, negative effects on private life, and presenteeism [39].
Low-emission mobility and active mobility reduce traffic noise and pollution from nitrogen oxides and particulates. Air quality improves [15; 40]. Children are exposed to an above-average risk from pollutant emissions from traffic [15]. Active mobility can help to maintain people’s fitness for work, as movement increases physical and mental fitness. Walking to school correlates with positive cognitive development in children [41]. Active mobility also improves the quality of life, reduces medical costs and relieves the burden on the social security systems [15; 41]. Electric bicycles can also lower the bar for physically weaker people to gain access to active mobility and the associated health benefits [41].
At the same time, however, cyclists are now involved in a fifth of all commuting accidents: in 2022, bicycles accounted for 37,120 commuting accidents alone [42]. In total, 97,856 cyclists and 26,489 pedestrians were injured in road traffic accidents in Germany that year; 474 cyclists and 368 pedestrians were killed in road traffic accidents [43-45]. The current state of the transport infrastructure, particularly the cycle infrastructure with the deficiencies in its expansion, condition and design described above, may be a contributing factor here. Other factors include traffic density, speed and behaviour, the presence of heavy goods vehicles, and weather and visibility conditions [41]. Many accidents between trucks and vans on the one hand and cyclists and pedestrians on the other could, however, be avoided by driver assistance systems [46].
|
[1] Deutsche Nachhaltigkeitsstrategie - Weiterentwicklung 2021. Hrsg.: Die Bundesregierung, Berlin 2021
https://www.bundesregierung.de/resource/blob/975274/1873516/9d73d857a3f7f0f8df5ac1b4c349fa07/2021-03-10-dns-2021-finale-langfassung-barrierefrei-data.pdf?download=1 (PDF, 9,9 MB, non-accessible) (abgerufen am 19.02.2024)
[2] Nationale Plattform Zukunft der Mobilität (NPM): Ergebnisbericht der Nationalen Plattform Zukunft der Mobilität - Ergebnisse aus drei Jahren NPM (2018 - 2021). Hrsg.: Bundesministerium für Verkehr und digitale Infrastruktur (BMVI), Berlin 2021
https://www.plattform-zukunft-mobilitaet.de/wp-content/uploads/2021/10/20211011-NPM-EB21-DE-digital-final.pdf (PDF, 5,9 MB, non-accessible) (abgerufen am 28.05.2024)
[3] Klimaschutz im Verkehr. Hrsg.: Umweltbundesamt, Dessau-Roßlau 2024
https://www.umweltbundesamt.de/themen/verkehr/klimaschutz-im-verkehr#undefined, 30.04.2024 (abgerufen am 28.05.2024)
[4] Überblick: Klimaschutz im Verkehr. Hrsg.: Bundesministerium für Digitales und Verkehr, Berlin 2023
https://bmdv.bund.de/SharedDocs/DE/Artikel/G/Klimaschutz-im-Verkehr/klimaschutz-im-verkehr-ueberblick.html, 13.07.2023 (abgerufen am 29.05.2024)
[5] Lintzmeyer, F.; Savaşçı, G.; Schwarz, C.; Christina, M.; Bandelow, N. C.; Hornung, J.; Vogeler, C. S.; Klein, L.: Erfolgsfaktoren und Hemmnisse für eine umweltorientierte Verkehrspolitik. Abschlussbericht. Hrsg.: Umweltbundesamt, Dessau-Roßlau 2021
https://www.umweltbundesamt.de/publikationen/erfolgsfaktoren-hemmnisse-fuer-eine (abgerufen am 27.05.2024)
[6] About TUMI (Transformative Urban Mobility Initiative). Hrsg.: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Bonn 2024
https://transformative-mobility.org/about/ (abgerufen am 31.05.2024)
[7] Lange, M.: Klimaschutz durch Tempolimit. Wirkung eines generellen Tempolimits auf Bundesautobahnen auf die Treibhausgasemissionen. Hrsg.: Umweltbundesamt, Dessau-Roßlau 2020
https://www.umweltbundesamt.de/publikationen/klimaschutz-durch-tempolimit (abgerufen am 03.07.2024)
[8] Klimaschutzziele und Beschlüsse. Hrsg.: Bundesministerium für Digitales und Verkehr, Berlin 2023
https://bmdv.bund.de/SharedDocs/DE/Artikel/G/Klimaschutz-im-Verkehr/klimaschutz-ziele-und-beschluesse.html, 13.07.2023 (abgerufen am 31.05.2024)
[9] Neuzugelassene Pkw ab 2035. EU-Umweltrat: Nur noch CO2-frei fahren. Hrsg.: Die Bundesregierung, Berlin 2024
https://www.bundesregierung.de/breg-de/schwerpunkte/europa/verbrennermotoren-2058450 (abgerufen am 04.06.2024)
[10] Masterplan Ladeinfrastruktur II der Bundesregierung. Hrsg.: Bundesministerium für Digitales und Verkehr (BMDV) Berlin 2022
https://bmdv.bund.de/SharedDocs/DE/Anlage/G/masterplan-ladeinfrastruktur-2.pdf?__blob=publicationFile (PDF, 838 KB, non-accessible) (abgerufen am 31.05.2024)
[11] FAQ zur Umsetzung der Clean Vehicles Directive (CVD) in Deutschland. Hrsg.: Bundesministerium für Digitales und Verkehr, Berlin 2023
https://bmdv.bund.de/SharedDocs/DE/Artikel/G/clean-vehicles-directive-faq.html, 07.11.2024 (abgerufen am 31.05.2024)
[12] Klimaschutzprogramm 2023 der Bundesregierung. Hrsg.: Bundesministerium für Wirtschaft und Klimaschutz, Berlin 2023
https://www.bmwk.de/Redaktion/DE/Downloads/klimaschutz/20231004-klimaschutzprogramm-der-bundesregierung.pdf?__blob=publicationFile&v=10 (PDF, 371 KB, non-accessible) (abgerufen am 31.05.2024)
[13] Independent Group of Scientists appointed by the Secretary-General: Global Sustainable Development Report 2023: Times of crisis, times of change: Science for accelerating transformations to sustainable development. Hrsg.: United Nations, New York 2023
https://sdgs.un.org/sites/default/files/2023-09/FINAL%20GSDR%202023-Digital%20-110923_1.pdf (PDF, 4,6 MB, non-accessible) (abgerufen am 27.02.2024)
[14] Deutsches Ressourceneffizienzprogramm III – 2020 bis 2023. Programm zur nachhaltigen Nutzung und zum Schutz der natürlichen Ressourcen. Hrsg.: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU), Berlin 2020
https://www.bmuv.de/publikation/deutsches-ressourceneffizienzprogramm-iii-2020-bis-2023 (abgerufen am 10.06.2024)
[15] Frey, K.; Burger, A.; Dziekan, K.; Bunge, C.; Lünenbürger, B.: Position August 2020. Verkehrswende für ALLE. So erreichen wir eine sozial gerechtere und umweltverträglichere Mobilität. Hrsg.: Umweltbundesamt, Dessau-Roßlau 2020
https://www.umweltbundesamt.de/publikationen/verkehrswende-fuer-alle (abgerufen am 05.06.2024)
[16] Beschluss der Sonder-Verkehrsministerkonferenz am 26. Februar 2021 (als Video-/Telefon-Schaltkonferenz). Hrsg.: Verkehrsministerkonferenz, Berlin 2021
https://www.verkehrsministerkonferenz.de/VMK/DE/termine/sitzungen/21-02-26-sonder-vmk-telefonschaltkonferenz/21-02-26-beschluss.pdf?__blob=publicationFile&v=3 (PDF, 95,8 KB, non-accessible) (abgerufen am 23.10.2024)
[17] Eckpunkte zur Zukunft der DB und der Schiene. Hrsg.: Bundesministerium für Digitales und Verkehr, Berlin 2022
https://bmdv.bund.de/SharedDocs/DE/Anlage/E/eckpunkte-der-zukunft-der-schiene.pdf?__blob=publicationFile (PDF, 279 KB, non-accessible) (abgerufen am 04.06.2024)
[18] Friese, F.; Schaaffkamp, C.; Klauser, C.: Kurzstudie zum Personalbedarf im kommunalen ÖPNV bis 2030/35. Hrsg.: KCW GmbH, Berlin 2024
https://www.klima-allianz.de/publikationen/publikation/kurzstudie-personalbedarf-im-oepnv-bis-2030-35 (abgerufen am 12.09.2024)
[19] Lutter, S.; Kreimel, J.; Giljum, S.; Dittrich, M.; Limberger, S.; Ewers, B.; Schoer, K.; Manstein, C.: Die Nutzung natürlicher Ressourcen - Ressourcenbericht für Deutschland 2022. Hrsg.: Umweltbundesamt, Dessau-Roßlau 2022
https://www.umweltbundesamt.de/ressourcenbericht2022 (abgerufen am 06.03.2024)
[20] Fahrleistungen, Verkehrsleistung und Modal Split. Hrsg.: Umweltbundesamt, Dessau-Roßlau 2024
https://www.umweltbundesamt.de/daten/verkehr/fahrleistungen-verkehrsaufwand-modal-split#fahrleistung-im-personen-und-guterverkehr, 13.02.2024 (abgerufen am 31.05.2024)
[21] Fahrradland Deutschland 2030. Nationaler Radverkehrsplan 3.0. Hrsg.: Bundesministerium für Digitales und Verkehr (BMDV), Berlin 2022
https://bmdv.bund.de/SharedDocs/DE/Artikel/StV/Radverkehr/nationaler-radverkehrsplan-3-0.html (abgerufen am 05.06.2024)
[22] Bauer, U.; Hertel, M.; Buchmann, L.: Geht doch! Grundzüge einer bundesweiten Fußverkehrsstrategie. Hrsg.: Umweltbundesamt, Dessau-Roßlau 2018
https://www.umweltbundesamt.de/publikationen/geht-doch (abgerufen am 06.06.2024)
[23] Interview mit Björn Nagel vom DLR: "Luftfahrt ist in grundlegender Architektur neu zu gestalten" Hrsg.: Die Bundesregierung, Berlin 2022
https://www.bundesregierung.de/breg-de/schwerpunkte/klimaschutz/gruenes-fliegen-2054386, 22.06.2022 (abgerufen am 10.06.2024)
[24] van Ackeren, J.: Der Traum vom guten Fliegen. Fraunhofer-Magazin (2024) Nr. 1, S. 32-34
[25] Altenburg, S.; Auf der Maur, A.; Brutsche, A.; Zwicker, M.-L.: Alternatives Verkehrsszenario für Deutschland. Prämissen für eine klimafreundlichere Verkehrsentwicklung als Grundlage für die Infrastrukturplanung. Hrsg.: Prognos AG, Basel 2023
https://www.greenpeace.de/publikationen/Greenpeace_Alternatives_Verkehrsszenario.pdf (PDF, 5,5 MB, non-accessible) (abgerufen am 04.07.2024)
[26] Rauber, J.; Lell, O.; Muster, V.: Weniger Verkehr mehr Lebensqualität. Leitfaden zur Kommunikation von Suffizienz als Ziel kommunaler Verkehrspolitik. Hrsg.: Umweltbundesamt, Dessau-Roßlau 2022
https://www.umweltbundesamt.de/publikationen/weniger-verkehr-mehr-lebensqualitaet (abgerufen am 31.05.2024)
[27] Jurczok, F.; Gensheimer, T.; Specht, F.: Fahrrad-Monitor 2023. Ergebnisse einer repräsentativen Online-Befragung. Hrsg.: SINUS Markt- und Sozialforschung GmbH, Heidelberg 2023
https://bmdv.bund.de/SharedDocs/DE/Anlage/StV/fahrradmonitor-langfassung.pdf?__blob=publicationFile (PDF, 8,3 MB, non-accessible) (abgerufen am 04.07.2024)
[28] Bienzeisler, B.; Zanker, C.: Zustellarbeit 4.0 – Eine 360-Grad-Analyse. Leitfaden zur Entwicklung der Zustellarbeit am Beispiel der KEP-Branche. Hrsg.: Fraunhofer-Institut für Arbeitswissenschaft und Organisation (IAO), Stuttgart 2023
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/6aff779b-2c0f-4350-8d38-d42ccf364da8/content (PDF, 1255 KB, non-accessible) (abgerufen am 04.07.2024)
[29] Graefe, L.: Fahrradtourismus: Radreisen gewinnen an Beliebtheit. Hrsg.: Statista GmbH, Hamburg 2024
https://de.statista.com/themen/2699/radtourismus/, 26.04.2024 (abgerufen am 04.07.2024)
[30] Graefe, L.: Wandertourismus - Daten und Fakten rund ums Wandern. Hrsg.: Statista GmbH, Hamburg 2024
https://de.statista.com/themen/2041/wandertourismus/, 28.03.2024 (abgerufen am 04.07.2024)
[31] Die Transformation deutscher Automobilzulieferer zur Elektromobilität. Auf dem Weg, aber noch nicht am Ziel. Hrsg.: Deloitte GmbH Wirtschaftsprüfungsgesellschaft; Verband der Automobilindustrie e. V. (VdA), München; Berlin 2021
https://www2.deloitte.com/de/de/pages/consumer-industrial-products/articles/automobilzulieferer-transformation-elektromobilitaet-studie-2021.html (abgerufen am 17.09.2024)
[32] DGUV Information 209-093 Qualifizierung für Arbeiten an Fahrzeugen mit Hochvoltsystemen. Hrsg.: Deutsche Gesetzliche Unfallversicherung e.V. (DGUV), Berlin 2021
https://publikationen.dguv.de/widgets/pdf/download/article/3982 (abgerufen am 23.10.2024)
[33] Thierbach, M.: Zukunft Elektrofahrzeug - Arbeitsschutz ist gefragt. Hrsg.: Kommission Arbeitsschutz und Normung (KAN), Sankt Augustin 2010
https://www.kan.de/publikationen/kanbrief/von-der-forschung-zur-normung/zukunft-elektrofahrzeug-arbeitsschutz-ist-gefragt (abgerufen am 23.10.2024)
[34] Hirtl, R.; Bodewein, L.; Schmiedchen, K.; Dechent, D.; Stunder, D.; Gräfrath, D.; Winter, L.; Kraus, T.; Drießen, S.; Schmid, G.: Ressortforschungsberichte zum Strahlenschutz. Exposition und Wirkungen der elektromagnetischen Felder neuartiger Technologien im Zwischenfrequenzbereich - systematischer Review - Vorhaben 3616S82437. Hrsg.: Bundesamt für Strahlenschutz (BfS), Salzgitter 2018
http://nbn-resolving.de/urn:nbn:de:0221-2018080715819 (abgerufen am 18.08.2018)
[35] Strahlenschutz bei der Elektromobilität. Hrsg.: Bundesamt für Strahlenschutz (BfS), Salzgitter 2023
https://www.bfs.de/DE/themen/emf/e-mobilitaet/e-mobilitaet_node.html, 14.11.2023 (abgerufen am 12.09.2024)
[36] Meilenstein für nachhaltige Batterien: Wie Kohlenstoffe "grüner" werden. Hrsg.: Fraunhofer-Institut für Silicatforschung ISC, Würzburg 2021
https://www.isc.fraunhofer.de/de/presse-und-medien/presseinformationen/HiQ-CARB-meilenstein-fuer-nachhaltige-batterien.html, 04.06.2021 (abgerufen am 13.09.2024)
[37] FAQ's. Tätigkeiten mit Nanomaterialien. Arbeitshilfe für Betriebsärztinnen und Betriebsärzte. Hrsg.: Deutsche Gesetzliche Unfallversicherung e. V. (DGUV), Berlin 2010
https://www.dguv.de/medien/inhalt/praevention/praev_gremien/arbeitsmedizin/produkte/faq_nano/faqs_nano_021110.pdf (PDF, 255 kB, non-accessible) (abgerufen am 02.05.2024)
[38] Ressourceneffiziente Kreislaufwirtschaft. Forschungskonzept für eine kreislaufoptimierte Wirtschaftsweise. Hrsg.: Bundesministerium für Bildung und Forschung (BMBF), Berlin 2018
https://www.bmbf.de/SharedDocs/Publikationen/de/bmbf/7/31419_Ressourceneffiziente_Kreislaufwirtschaft.pdf?__blob=publicationFile&v=3 (abgerufen am 24.04.2024)
[39] Jens, P.: Bahn kann immer wieder Stellwerke nicht besetzen. Hrsg.: Norddeutscher Rundfunk, Hamburg 2024
https://www.tagesschau.de/wirtschaft/bahn-personalmangel-stellwerke-100.html, 10.09.2024 (abgerufen am 12.09.2024)
[40] Circle Economy: The Circularity Gap Report 2023. Hrsg.: Circle Economy, Amsterdam 2023
https://www.circularity-gap.world/2023 (abgerufen am 20.03.2024)
[41] Zufußgehen und Radfahren: Neueste Erkenntnisse zur Unterstützung von Politikgestaltung und Praxis. Hrsg.: WHO-Regionalbüro für Europa, Kopenhagen 2022
https://iris.who.int/handle/10665/363524 (abgerufen am 11.09.2024)
[42] Wegeunfälle mit dem Fahrrad nehmen zu. Hrsg.: Deutsche Gesetzliche Unfallversicherung e.V (DGUV), Berlin 2023
https://www.dguv.de/kompakt/aktuelles/2023/05-2023/grafik.jsp?query=webcode+d1184034#:~:text=2013%20gab%20es%2022.530%20Wegeunf%C3%A4lle,ein%20Unfall%20mit%20dem%20Fahrrad(abgerufen am 11.09.2024)
[43] Bundesamt, S.: Anzahl der getöteten Fahrradfahrer bei Straßenverkehrsunfällen in Deutschland von 1980 bis 2022. Hrsg.: Statista GmbH, Hamburg 2023
https://de.statista.com/statistik/daten/studie/1041872/umfrage/getoetete-fahrradfahrer-im-strassenverkehr-in-deutschland/ (abgerufen am 06.06.2024)
[44] Verletzte bei Verkehrsunfällen nach Art der Verkehrsbeteiligung. Hrsg.: Statistisches Bundesamt (Destatis) Wiesbaden 2024
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/Tabellen/verletzte-fahrzeugart.html, 26.03.2024 (abgerufen am 06.06.2024)
[45] Statistisches Bundesamt: Anzahl der getöteten Fußgänger bei Straßenverkehrsunfällen in Deutschland von 1980 bis 2022. Hrsg.: Statista GmbH, Hamburg 2023
https://de.statista.com/statistik/daten/studie/459038/umfrage/anzahl-der-fussgaengerunfaelle-deutschland/ (abgerufen am 07.06.2024)
[46] Wirth, G.: Allianz: Viele LKW-Unfälle sind vermeidbar. Hrsg.: Bayerischer Rundfunk, München 2024
https://www.br.de/nachrichten/wirtschaft/allianz-viele-lkw-unfaelle-sind-vermeidbar,URHOqi6, 16.10.2024 (abgerufen am 23.10.2024)
[47] Zuser, V.; Knowles, D.; Soteropoulos, A.; Specht, C.: Kinder im Straßenverkehr: Mit Sicherheit mobil. Ein Leitfaden zur Förderung der aktiven Mobilität und Verkehrssicherheit von 6- bis 14-Jährige. Hrsg.: KFV (Kuratorium für Verkehrssicherheit), Wien 2021
https://radkompetenz.at/wp-content/uploads/2021/12/Leitfaden-Kinder_2021_bf_korr.pdf (PDF, 1682 KB, non-accessible) (abgerufen am 13.09.2024)