Expansion of renewable energies

picture of a biogas plant and wind turbines stand behind a rapeseed field under a blue sky

Source: Natascha - stock.adobe.com

Renewable energies include wind energy, solar energy, biomass, hydropower and geothermal energy [1]. In 2022, renewable energies accounted for 20.4% of energy consumed by end users across all sectors in Germany. Just over half of this was generated from biomass, a good quarter from wind, 14% from photovoltaics (PV) and solar thermal energy and 4% each from hydropower and geothermal energy [2]. Expansion of renewable energies in all sectors is a central pillar of the decarbonization effort, and makes a crucial contribution to climate change mitigation and security of supply in Germany [3].


  • What is accelerating this development, and what is slowing it down?

    The political goals are ambitious and can be considered the driver of the trend:

    In the electricity sector, Germany aims to almost double the proportion of its gross electricity consumption met by renewable energies, from just over 46% in 2022 to 80% by 2030. It plans to achieve this by wide-scale installation of onshore and offshore wind turbines and photovoltaic (PV) systems [2]. This requires, however, that:

    • The pace of wind and solar power installation be tripled [4]
    • Wind turbine and PV systems that are now 20 to 25 years old be replaced
    • Power grids be upgraded and expanded

    Biogenic residues and waste are to be used on a greater scale for power generation [5], and biogas plants are to be converted into highly flexible peak-load power plants that can bridge the gap during "dark doldrums" [6].

    In the thermal energy sector (including refrigeration), the share of renewable energy is to increase from just over 17% to 27% by 2030. By 2045, buildings in Germany should be climate-neutral through:

    • Use of renewable energies (e.g. solar thermal energy, power-to-heat by the use of heat pumps, fuel firing plants for solid fuels) on a wide scale
    • District heating and green hydrogen in the thermal energy sector
    • Renovation of buildings
    • Reductions in consumption [7; 8]

    Before now, renewable energy in the thermal energy sector has been obtained almost exclusively from biomass. Geothermal energy, ambient heat and solar thermal energy have played a secondary role, at 16% [2], but are expected to be the primary forms driving the expansion of renewable energies in the thermal energy sector.

    In the transport sector, the share of renewable energies was 6.8% in 2022. Of this, only 15% was accounted for by electricity generated from renewable sources, the remainder by biofuels [2]. The share of renewable energies in the transport sector (road and rail) is to increase almost fivefold by 2030 [8], primarily by:

    • Electrification of road and rail transport, and micromobility
    • Use of alternative fuels (e.g. hydrogen, methane, ammonia).

    Plans are for the expansion of renewables by 2030 to be driven in particular by wind, solar and geothermal energy. Compared to 2022, onshore wind power generation, for example, is set to almost double (to 115 GW), and solar energy to increase even more strongly (by a factor of 3.2, to 215 GW) [4; 9]. An additional 10 TWh of heat is to be obtained from deep and medium-depth geothermal energy. This would equate to almost half the total energy generated from geothermal energy and ambient heat in 2022 [2; 10]. By contrast, the use of cultivated biomass and wood must be viewed less favourably owing to its global impact on biodiversity, forests and food production, and requires a global assessment of its carbon footprint [11].

    New storage technologies (e.g. new types of batteries) or power-to-gas [HA2] (e.g. hydrogen) are intended to exploit surplus renewable energy. Should this not prove possible, it could slow down the expansion of renewable energies. If successful, however, it would make a significant contribution to energy efficiency, as would sector coupling.

    Timely expansion of renewable energies is jeopardized by the shortage of skilled workers in the power generation and distribution industry, its upstream industries (e.g. the electrical engineering, raw materials and building materials industries), the craft trades and the construction sector. Excessive dependence on certain raw materials, the scarcity of raw materials and fragile global supply chains may also prove an obstruction to expansion. Furthermore, implementation may be delayed by protracted approval procedures, such as for high-voltage transmission lines, and by social, economic or political resistance to the expansion of renewable energies.

  • Who is affected?

    The expansion of renewable energies has an impact on all sectors and the population as a whole. The following sectors of the economy are strongly affected:

    • Power generation and distribution industry
    • craft trades (electrical, roofing; sanitary, heating and air conditioning)
    • electrical engineering
    • raw materials and building materials industry
    • chemical industry
    • waste management
    • transport
    • agriculture
    • civil engineering
    • energy-intensive industries (e.g. foundries
    • manufacture of glass, glassware and ceramics
    • manufacture of bakery products
    • printing and paper processing)
  • Examples
  • What do these developments mean for workers’ safety and health?

    Climate change calls for rapid and comprehensive expansion of renewable energies to drive decarbonization forward in the various sectors. Employees in the power generation and distribution industry and the craft trades, in particular, are under considerable pressure to bring the transformation about. Upstream supply sectors are also coming under pressure, however. Energy-intensive industries must modify their production processes, and the waste management industry must develop processing methods and a recycling infrastructure for electric batteries and electrical scrap - and also for wind turbine rotor blades - to ensure a more independent and responsible supply of raw materials. The transformation processes associated with the expansion of renewable energies, and the current shortage of skilled workers in many affected sectors, bring with them risks of work intensification, overload and resignation, besides the specific risks mentioned below.

    The risks arising from work on power generation installations are for the most part already known.

    Wind energy

    Wind turbines may be well over 100 metres in height. The climb to the nacelle and work on rotor blades involves a risk of falling [12]. Employees performing maintenance work on wind turbines are exposed to electrical hazards. The risk of electric shock is particularly high in confined spaces and/or in conductive environments [13]. Meteorological risks are also a significant factor, both onshore and offshore [13; 14].

    Exposure to hazardous substances (e.g. from cleaning agents) in confined spaces, noise, musculoskeletal stress, poor lighting, mechanical hazards (e.g. machine parts, sharp edges) and fires constitute further potential hazards [13].

    The decommissioning of wind turbines and recycling of rotor blade waste may lead to exposure, particularly to potentially carcinogenic fragments and fibres of glass and carbon [15].

    Photovoltaics

    PV modules are manufactured under controlled conditions in highly automated processes. PV systems are installed on buildings or in open spaces by the craft trades. The greatest risks during installation, maintenance, module replacement and decommissioning are those of falling off and through structures, and electrical hazards. Other hazards may be presented by, for example, the transport of materials, UV radiation, glare, burns on hot surfaces, heavy lifting and carrying, forced postures, and exposure to the weather [16; 17].

    PV systems are increasingly being installed on land already used for agricultural crop production (agrivoltaics), as water-borne systems (floating PV) or as shading on moorland. Agrivoltaics, in particular, may present an elevated risk of exposure to zoonoses and allergens, and exposure to pesticides cannot be ruled out.

    Biomass

    Contact with biogases presents a risk of explosion, fire and asphyxiation [18-20]. High concentrations of these gases can lead to poisoning, headaches, dizziness, irritation of the respiratory tract and mucous membranes, and vomiting. Physical impairments caused by exposure may make falls more likely. Other hazards arising during work in biogas plants include burns, electrical risks, noise exposure and collision risks in site traffic [18].

    Solid biomass (substrate to be fermented or fermentation residues) contains microorganisms that, in very high concentrations, have a sensitizing and/or toxic effect and may trigger infectious diseases [19; 20].

    Wood pellet stores present risks in the form of harmful concentrations of carbon monoxide and of explosions caused by dust formation, e.g. during charging [21; 22].

    Geothermal energy

    Deposits with elevated radioactivity can occur in geothermal plant components only when deep geothermal energy is harvested and the geothermal deep water has a high saline content. Personal protective equipment can help to reduce exposure. As geothermal energy is a recent technology, experience is as yet limited regarding standardized procedures for recycling or disposing of the deposits [23].

  • What observations have been made for occupational safety and health, and what is the outlook?
    • Many of the risks associated with the expansion of renewable energies are already known, and suitable preventive measures are in place. Owing to the green transformation, however, risks and hazards that in principle are already familiar are being displaced to other sectors. Transfer between the affected sectors of knowledge regarding safe and healthy work is thus all the more important.
    • The expansion of renewable energies gives rise to new or modified technologies, processes, vocations and workplaces. The accompanying risks and the associated need for training must be anticipated, identified and evaluated in multidisciplinary teams. Establishing occupational safety and health from the outset as a part of development processes provides opportunity for work to be shaped in the interests of safety and health.
    • The urgency of the transformation processes, together with a far-reaching shortage of skilled workers, increases the likelihood of work-related stress.
      Consideration for mental health aspects is becoming increasingly relevant. The same holds true for measures to improve the availability of skilled workers: first and foremost by the imparting of skills through training and further education, but also, for example, by providing safe and healthy working conditions and, if possible, granting greater flexibility in the timing and location of work.
    • The expansion of renewable energies will not be possible without new processes for recycling and disposal. Development of a European recycling infrastructure for electric batteries and electronic waste and for wind turbine rotor blades is also essential. A new industry will emerge in the waste management sector, presenting the occupational safety and health community with the opportunity to help shape it from the outset.
  • Sources (in German only)

    [1] Erneuerbare Energien. Hrsg.: Umweltbundesamt, Dessau-Roßlau 2023 (abgerufen am 22.06.2023)

    [2] Erneuerbare Energien in Zahlen. Hrsg.: Umweltbundesamt, Dessau-Roßlau 2023 (abgerufen am 22.06.2023)

    [3] Erneuerbare Energien. Hrsg.: Bundesministerium für Wirtschaft und Klimaschutz (BMWK), Berlin 2023 (abgerufen am 22.06.2023)

    [4] Energiewende beschleunigen – Mehr Energie aus erneuerbaren Quellen. Hrsg.: Presse- und Informationsamt der Bundesregierung, Berlin 2023 (abgerufen am 22.06.2023)

    [5] Nutzen und Bedeutung der Bioenergie. Hrsg.: Bundesministerium für Ernährung und Landwirtschaft (BMEL), Berlin 2020 (abgerufen am 22.06.2023)

    [6] Özdemir: Osterpaket macht Landwirtschaft zum Treiber der Energiewende und stärkt die Wertschöpfung im ländlichen Raum Hrsg.: Berlin 06.04.2022 (abgerufen am 22.06.2023)

    [7] Bundeskabinett beschließt Novelle des Gebäudeenergiegesetzes – Umstieg auf Heizen mit Erneuerbaren eingeleitet. Hrsg.: Bundesministerium für Wirtschaft und Klimaschutz (BMWK), Berlin 2023, 19.04.2023 (abgerufen am 22.06.2023)

    [8] Basisdaten Bioenergie Deutschland 2022. Hrsg.: Fachagentur Nachwachsende Rohstoff e e. V. (FNR) (non-accessible), Gülzow-Prüzen 2022 (abgerufen am 22.06.2023)

    [9] Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz - EEG 2023) § 4 Ausbaupfad. Hrsg.: Bundesrepublik Deutschland, vertreten durch den Bundesminister der Justiz, Berlin 2023 (abgerufen am 22.06.2023)

    [10] Eckpunkte für eine Erdwärmekampagne – Geothermie für die Wärmewende Hrsg.: Bundesministerium für Wirtschaft und Klimaschutz (BMWK), Berlin 2022 , 22.11.2022 (abgerufen am 22.06.2023)

    [11] Searchinger, T.; James, O.; Dumas, P.; Kastner, T.; Wirsenius, S.: Klimaschutz auf Kosten der Natur. Spektrum der Wissenschaft 5 (2023), S. 50-56

    [12] Vaudoux, D.: Travail en hauteur. L'éolien donne des ailes à sa maintenance. Travail et Sécurité 741 (2013) Nr. juillet-aout, S. 42-43

    [13] BGI 657 Windenergieanlagen. Hrsg.: Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse, Köln 2014 (abgerufen am 14.10.2020)

    [14] Bondéelle, A.: Un souffle nouveau dans l’éolien. Travail et Sécurité 763 (2015) Nr. juillet-aout

    [15] Kühne, C.; Holz, P.; Volk, R.; Stallkamp, C.; Steffl, S.; Schultmann, F.; Mülhopt, S.; Baumann, W.; Wexler, M.; Yogish, S.; Kühn, S.; Gehrmann, H.-J.; Stapf, D.; Schweppe, R.; Pico, D.; Seiler, E.; Forberger, J.; Brantsch, P.; Brenken, B.; Beckmann, M.: 3. Zwischenbericht. Entwicklung von Rückbau- und Recyclingstandards für Rotorblätter. Hrsg.: Umweltbundesamt, Dessau-Roßlau 2021 (abgerufen am 22.06.2022)

    [16] DGUV Information 203-080 Montage und Instandhaltung von Photovoltaik-Anlagen. Hrsg.: Deutsche Gesetzliche Unfallversicherung e. V. (DGUV), Berlin 2015 (abgerufen am 22.06.2023)

    [17] Bovenschulte, M.; Abel, S.; Ehrenberg-Silies, S.; Goluchowicz, K.: Auswirkungen des Klimawandels auf technologische Entwicklungen und deren Folgen für Arbeitssicherheit und Gesundheit – Strategische Vorausschau der Denkfabrik Digitale Arbeitsgesellschaft des BMAS (accessible). Hrsg.: Institut für Innovation und Technik (IIT), Berlin 2021 (abgerufen am 22.06.2023)

    [18] Bec, A.; Delaunois, P.; Beillevaire, J.; Giraudeau, A.; Moreau, S.; Mauguen, G.; Palka, T.; Petegrief, G.; David, C.; Marc, F.; Sallé, B.: Méthanisation de déchets issus de l'élevage, de l'agriculture et de l'agroalimentaire. Hrsg.: L'institut national de recherche et de sécurité (INRS), Paris 2013 (abgerufen am 09.10.2020)

    [19] Explosionsschutz hat große Bedeutung. Hrsg.: Deutsche Gesetzliche Unfallversicherung e. V., Berlin (abgerufen am 08.10.2020)

    [20] Technische Information 4 Sicherheitsregeln für Biogasanlagen (non-accessible). Hrsg.: Sozialversicherung für Landwirtschaft, Forsten und Gartenbau, Kassel 2016 (abgerufen am 13.10.2020)

    [21] Lagerung von Holzpellets. Enplus-konforme Lagersysteme. Hrsg.: Deutscher Energieholz- und Pellet-Verband e. V. (DEPV); Deutsches Pelletinstitut GmbH, Berlin 2019 (abgerufen am 25.01.2021)

    [22] Fachbereichs-Information. Kohlenmonoxid bei Transport und Lagerung von Holzpellets im gewerblichen Gebrauch (non-accessible). Hrsg.: Fachbereich Handel und Logistik der DGUV, Sachgebiet Fördern, Lagern, Logistik im Warenumschlag c/o Berufsgenossenschaft Handel und Warenlogistik, Mannheim 2017 (abgerufen am 26.01.2021)

    [23] Rückstände aus der tiefen Geothermie. Hrsg.: Bundesamt für Strahlenschutz, Salzgitter 2022, 06.05.2022 (abgerufen am 22.06.2023)

Contact

Dipl.-Psych. Angelika Hauke

Work Systems of the Future

Tel: +49 30 13001-3633


Dipl.-Übers. Ina Neitzner

Work Systems of the Future

Tel: +49 30 13001-3630
Fax: +49 30 13001-38001