Annex 4:
 Example of how to determine the rating level

In a foreman's office in a mechanical workshop (separate booth, with windows), there are three distinct phases depending on the production processes and machine utilisation, i.e.:

Phase 1: Background noise
(hydraulic systems, fans, idle machines)
Approx. 15\% of the shift
Phase 2: Majority of the processing machinery in operation Approx. 80% of the shift

Phase 3: Majority of the processing machinery and the guillotine shears in operation
Approx. 5\% of the shift

Each of these phases is assumed to be a sub-interval and the sound exposure levels are calculated separately as described below.

- Sub-interval 1

An equivalent continuous sound exposure level $L_{\text {pAeq,m }}$ of $47.2 \mathrm{~dB}(\mathrm{~A})$ is determined for the background noise (mean of two measurements). Since there is a hydraulic unit that makes one single, very distinct sound, an adjustment of $3 \mathrm{~dB}(\mathrm{~A})$ is specified for the tonality and information content.

- Sub-interval 2

When the processing machinery is operating as usual, an equivalent continuous sound exposure level $L_{\text {peeq, m }}$ of $61.8 \mathrm{~dB}(\mathrm{~A})$ is determined (mean of two measurements). The noise is not felt to be tonal, i.e. no adjustments need to be made.

- Sub-interval 3

The guillotine shears are used at irregular intervals throughout the day. Since the results of the first two measurements of the equivalent continuous sound exposure level differ by $2.4 \mathrm{~dB}(\mathrm{~A})$, a total of four measurements are taken in the booth. This yields a mean equivalent continuous sound exposure level $L_{\text {pAeq,m }}$ of $67.4 \mathrm{~dB}(\mathrm{~A})$. The degree of the impulse K_{1} for each measurement is determined at the same time, producing a mean value of $4.3 \mathrm{~dB}(\mathrm{~A})$.

The rating level can be calculated using the following formula
$L_{r}=10 \lg \left(\sum_{m=1}^{M} \frac{x_{m}}{100} 10^{0,1-1 L_{p, m}}\right) d B(A)$

Table 40, which shows the levels for each sub-interval and their duration as a percentage, illustrates how the calculation is carried out.

Table 40:
Calculation of the rating level based on sub-interval levels

Activity m	Sub-interval level $L_{\mathrm{p}, \mathrm{m}}$ in $\mathrm{dB}(\mathrm{A})$	Sub-interval duration x_{m} in \%	Formula value $\frac{x_{\mathrm{m}}}{100} \cdot 10^{0.1 \cdot L_{\mathrm{p}, \mathrm{~m}}}$
1	$47.2+3=50.2$	15	$15.71 \cdot 10^{3}$
2	$61.8+0=61.8$	80	1,210.85 $\cdot 10^{3}$
3	$67.4+4.3=71.7$	5	$739.55 \cdot 10^{3}$
		Σ	1,966.11 10^{3}

The values for each sub-interval are added together in the last column of the table to calculate a rating level L_{r} of approximately $63 \mathrm{~dB}(\mathrm{~A})$ by means of a logarithm and multiplication by 10 :

Based on VDI Guideline 2058-3, Part 2 (see Section 8.4. of these recommendations), the workplace in the foreman's booth is suitable for "simple or predominantly mechanised office work".
$L_{\mathrm{r}}=10 \lg \left(1,966.11 \cdot 10^{3}\right) \mathrm{dB}=62.9 \mathrm{~dB}(\mathrm{~A})$

